Analytical Threshold Voltage Modeling of Surrounding Gate Silicon Nanowire Transistors with Different Geometries
نویسندگان
چکیده
In this paper, we propose new physically based threshold voltage models for short channel Surrounding Gate Silicon Nanowire Transistor with two different geometries. The model explores the impact of various device parameters like silicon film thickness, film height, film width, gate oxide thickness, and drain bias on the threshold voltage behavior of a cylindrical surrounding gate and rectangular surrounding gate nanowire MOSFET. Threshold voltage roll-off and DIBL characteristics of these devices are also studied. Proposed models are clearly validated by comparing the simulations with the TCAD simulation for a wide range of device geometries.
منابع مشابه
Analytical Threshold Voltage Computations for 22 nm Silicon-on-Diamond MOSFET Incorporating a Second Oxide Layer
In this paper, for the first time, an analytical equation for threshold voltage computations in silicon-on-diamond MOSFET with an additional insulation layer is presented; In this structure, the first insulating layer is diamond which covered the silicon substrate and second insulating layer is SiO2 which is on the diamond and it is limited to the source and drain on both sides. Analytical solu...
متن کاملDrain Current and Short Channel Effects Modeling in Junctionless Nanowire Transistors
Planar MOS devices miniaturization becomes quite challenging for transistors with reduced channel length due to the loss of gate control over the channel charges. As an alternative, multi-gate devices have been developed due to the better electrostatic control of the charges, which leads to a reduction of the short-channel effects [1-6]. However, for devices with extremely reduced channel lengt...
متن کاملImprovement of Short Channel Effects in Cylindrical Strained Silicon Nanowire Transistor
In this paper we investigate the electrical characteristics of a new structure of gate all around strained silicon nanowire field effect transistors (FETs) with dual dielectrics by changing the radius (RSiGe) of silicon-germanium (SiGe) wire and gate dielectric. Indeed the effect of high-κ dielectric on Field Induced Barrier Lowering (FIBL) has been studied. Due to the higher electron mobility ...
متن کاملLow-voltage high-speed programming/erasing floating-gate memory device with gate- all-around polycrystalline silicon nanowire
Articles you may be interested in Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays Appl. Enhancement of programming speed on gate-all-around poly-silicon nanowire nonvolatile memory using self-aligned NiSi Schottky barrier source/drain High-performance gate-all-around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory Appl. ...
متن کاملHigh performance horizontal gate-all-around silicon nanowire field-effect transistors.
Semiconducting nanowires have been pointed out as one of the most promising building blocks for submicron electrical applications. These nanometer materials open new opportunities in the area of post-planar traditional metal-oxide-semiconductor devices. Herein, we demonstrate a new technique to fabricate horizontally suspended silicon nanowires with gate-all-around field-effect transistors. We ...
متن کامل